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Abstract

We model fluorescence images of single molecules in spherical dielectric
microcavities. Molecules are treated as time-harmonic dipoles. Images are
integrated over emission frequencies. Because of the strong refractive prop-
erties of the enclosing sphere, the fluorescence image depends on the re-
fractive index of the sphere and the position, orientation, and emission fre-
quency of the molecule. When the dipole’s emission is at the frequency of a
microsphere resonance, the brightest regions in the images appear to origi-
nate from outside the sphere for some dipole positions. This type of calcu-
lation should help in interpreting images of molecules in microspheres.
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1. Introduction

Images of fluorescence from single molecules in a gel [1], at a polymer-air
interface [2,3], and on the surface of a poly(acrylamide) matrix [3] have
been used to investigate a variety of photophysical phenomena. Images of
a single molecule excited by the resonant fields outside a 2-mm-diameter
sphere have been used to measure the absorption linewidths of molecules
at low temperature [4]. Recently, images of the fluorescence from single
molecules inside dielectric microspheres 7 to 9 µm in diameter have been
reported [5]. Modeling single-molecule fluorescence images embedded in
microspheres is the primary emphasis of this report.

Our method and results are also relevant to images of droplets contain-
ing many emitting molecules. Images of inelastic emission (lasing [6],
stimulated Raman scattering [7], and fluorescence [8–11]) from multiple
molecules in spheres and perturbed spheres have been used to investigate
modal energy distributions, orientations [8], and lifetimes [12] of molecules
at the surfaces of spheres [8], energy transfer between molecules in spheres
[9], and internal circulation in droplets [10,11].

Prior calculations of images from microspheres have mostly treated elastic
scattering: computed one-dimensional [13–16] and two-dimensional [17]
images of the elastic scattering by spheres have been reported and com-
pared with experiment [15–17]. Prior calculations of fluorescence images
from spheres have employed geometrical optics: fluorescence images of
relatively large droplets (5 mm diameter [11] or 400 µm diameter [18]), il-
luminated with laser beams focused along an equatorial plane of a droplet
[11,18], have been simulated and restored using geometrical optics, which
appears to be adequate for modeling images of the droplets used in these
combustion studies (with diameters greater than 200 µm). However, be-
cause of the importance of diffraction by the sphere, including morphology-
dependent resonances (MDRs, or whispering gallery mode resonances [19]),
geometrical optics is, in many cases, inadequate for interpreting inelastic-
emission images of smaller spheres. This is particularly true when gain
processes are supported by MDRs [6,7] or when the microspheres are in
a size range (say, 1 to 15 µm diameter) where cavity mode effects on spon-
taneous emission rates [12,20,21] are important, and where single-molecule
fluorescence is studied [22,23]. Single-, nonresonant-frequency images cal-
culated using physical optics have been presented previously in a paper
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[5] that emphasized experimental work, but few details of the model or
method of calculation were presented.

We describe here a physical optics method of calculating the image of
a single emitting molecule inside a microsphere. The emission from the
molecule, modeled as a dipole, is expanded in the vector spherical har-
monics [24,25]. Our method includes integration over the fluorescence
linewidth of the emitting molecule. Because we do not make either a Fres-
nel or paraxial approximation in computing the images, and do include the
vector nature of the fields, our method is not restricted to images obtained
with low numerical aperture (NA) systems as was the case for previously
reported calculated elastic-scattering images [15–17]. Here we present cal-
culated images for single-frequency emission, both on and off resonances
of the sphere, and frequency-integrated images. The images depend on pa-
rameters such as the radius (a) and refractive index (m) of the sphere, posi-
tion and orientation of the dipole, emission wavelength (and whether this
is near a resonance of the sphere), and the NA of the lens. With a single
dipole in the sphere, resonant emission may appear to emanate from out-
side the sphere, multiple regions of the sphere may appear bright (with the
brightest spots in the image appearing opposite where they would be if the
sphere were not there), or a spot may appear large and distorted. Because
of the interest in oriented molecules near the surface of a microsphere [12],
and because it has been shown that single molecules near the surface can be
spatially photoselected [22], we emphasize molecules near the microsphere
surface.

Calculations such as these should help in determining the extent to which
the position and orientation of a single molecule in or on a microsphere can
be determined from fluorescence images, and should be useful in interpret-
ing images of inelastic emission from spheres containing multiple emitting
molecules.
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2. Model and Methods

The problem is illustrated in figure 1. The main assumptions we make
in our model follow: The sphere is homogeneous (except for the single
molecule), perfectly spherical, and sufficiently far from other objects (in-
cluding the lens) that the problem is that of a sphere in an infinite medium.
The molecule’s natural emission lineshape is Lorentzian. The molecule does
not reabsorb its emission. The molecule’s emission at each frequency can
be modeled as that from a time-harmonic dipole. The lens (or system of
lenses) is diffraction limited, i.e., it converts diverging spherical waves S1

into converging spherical waves S2 [26]. The fields that excite the molecule
are filtered out of the image. (The exciting fields are not specified; we be-
gin with an excited molecule.) With these assumptions the image can be
obtained using physical optics, as described in the next sections.

2.1 Green Function for Source Inside Sphere

When a polarization source p(r′) (at source point r′ inside the sphere) radi-
ates, additional fields are induced inside and outside the sphere so that the
tangential components of the electric and magnetic fields are matched at
the sphere surface [24]. The resulting electric fields at field point r outside

Figure 1. Diagram in y = 0
plane showing sphere,
dipole, lens, and axes.
y-axis points into page in
all three coordinate
systems. Lens converts
diverging spherical wave
on S1 into converging
spherical wave on S2.
Dipole is always on z-axis
of sphere/dipole system.
Image is centered on zL2
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the sphere can be written as a dyadic Green function (using a common no-
tation for vector spherical harmonics from light-scattering work [27,28,25])
as∗

Es(kr) =
iω2µkm

π

∞∑
ν=1

Dν [ηTEn M3
ν(kr)M1

ν(mkr′) + ηTMn N3
ν(kr)N1

ν(mkr′)] p(r′), (1)

where k = 2π/λ is the wave number; λ is the free-space wavelength; ω is
the radian frequency [exp(−iωt) time variation]; m in Roman script is the
complex index of refraction; M1

ν and N1
ν , and M3

ν and N3
ν , are the vector

spherical harmonic functions of the first and third kind, respectively (for
M3

ν and N3
ν , the spherical Bessel function is replaced by an outgoing spher-

ical Hankel function); ν represents the spherical harmonic triple index (σ,
m, n), where σ is e (even) or o (odd), n is the mode number, and m (in
italics) is the azimuthal mode number; and the normalization constant is

Dν = εm
(2n+ 1) (n−m)!
4n(n+ 1)(n+m)!

, (2)

with εm = 1 for m = 0, and εm = 2 for m > 0.

The factors ηTEn and ηTMn become large when x = ka = size parameter of the
host sphere is that of a transverse electric (TE) or transverse magnetic (TM)
resonance, respectively. They are

ηTEn =
i/mx

jn(mx)[xh(1)
n (x)]′ − [mxjn(mx)]′h(1)

n (x)
(3)

and

ηTMn =
i/x

m2jn(mx)[xh(1)
n (x)]′ − [mxjn(mx)]′h(1)

n (x)
, (4)

where jn (mx) is the spherical Bessel function and h
(1)
n (x) is the spherical

Hankel function of the first kind. Derivatives (denoted by the primes) are
with respect to their argument.

2.2 Calculation of the Image

The z-axis is chosen to be the line passing from the origin through the po-
sition of the dipole (see fig. 1). Therefore only the m = 0 and 1 azimuthal

∗This Green function is obtained by rewriting equation A7 of S. C. Hill et al [25]; elim-
inating fGν , gGν , cHν , and dHν using equations A4, A5, A10, and A11; and eliminating the
integral over source points.
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modes are needed∗ in the expansion of the Green function (eq 1). There is
no loss of generality, because the lens can be centered at any angle Θ and
the dipole can be oriented in any direction.

The lens is centered on the zL1-axis of the lens coordinate system and on
the zL2-axis of the L2 coordinate system (whose origin is at the center of the
sphere defined by S2). The image plane is somewhere near the L2 origin.
We assume that the only nonzero fields on the surface enclosing the image
plane are on S2, over the region limited by the lens diameter.

Consider pairs of positions rS1 and rS2 (fig. 1), chosen so that the line
joining them is parallel to the zL1- and zL2-axes. The field E(rS1

) emitted
from the dipole/sphere system is a diverging spherical wave on surface
S1 (with radius of curvature R1; see fig. 1). The E(rS1

) is converted by
the diffraction-limited imaging system into a converging spherical wave
E(rS2

) on surface S2 (with radius of curvature R2). The E(rS1
) are tangen-

tial to S1 (because the lens is sufficiently distant from the sphere to be in the
far field), and the E(rS2

) are tangential to S2. Then Eθ(rS2) = Eθ(rS1), and
Eφ(rS2) = −Eφ(rS1). The image magnification (M ) is the ratio of the radii
of curvature, R2/R1.

Using Huygen’s principle (vector Kirchhoff diffraction formula [29]), the
electric field at image point rI (not necessarily at nominal focus) is

E(rI) = C

∫
S2

E(rS2
)
exp(ik|rI − rS2 |)
|rI − rS2 |

cos
(−rS2

|rS2 |
· (rI − rS2)
|rI − rS2 |

)
dA, (5)

where C is a constant, which we will ignore. The obliquity factor (the co-
sine term) can be ignored for the images we calculate here with NA = 0.5,
because all the image points are sufficiently close to the zL2-axis that the
minimum value of the obliquity factor for point on S2 is 0.996 (and for
most points is much closer to 1.0), and we have never observed it to have
an effect on an image.

The intensity at rI , omitting a proportionality constant, is I(rI) = |E(rI)|
2.

The integral over S2 is evaluated numerically. In integrating over frequency,
the intensities of the images are weighted by the molecule’s Lorentzian line-
shape function.

Our method of calculation differs from approaches used previously for
calculating elastic scattering images from particles [13,15–17], because we

∗The advantage of choosing the z-axis to pass through the dipole, and thereby limiting
the required m to 0 and 1, is that it provides a way to obtain images for relatively large
spheres without computing the angular functions and coefficients for all m up to n (and
without exceeding the available computer storage if these are saved). The disadvantage is
that it requires more manipulation and coordinate transformations afterwards.
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do not make the Fresnel approximation, but do calculate the vector fields
in the image plane. Therefore our approach is not restricted to relatively
small numerical apertures. In the previously calculated two-dimensional
elastic scattering images [17] the NA was 0.024. It is not clear how much
larger the NA could have been with the Fresnel approximation employed.
However, it is unlikely that the Fresnel approximation with scalar fields
would be adequate for calculating the large NA images obtained for single
molecules in microparticles. In such experiments the NA is kept relatively
large (e.g., 0.5) in order to increase the fraction of the light collected and to
achieve a higher spatial resolution.
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3. Results and Discussion

Figure 2 illustrates calculated images of a dipole near the surface (r/a
= 0.9999) of a 5-µm-diameter sphere imaged with an NA 0.5 lens at Θ = 90◦

from the z-axis. (If the refractive index of the sphere is set to m = 1 for
this case (not shown)—i.e., there is no sphere—a single bright spot appears
near xL2/aM = −1.0, yL2/aM = 0 (for the x-polarized case it is a single
bright ring), and its spot size, consistent with the diffraction limit, is com-
parable to those seen in fig. 2.) The emission at a nonresonant frequency
(column 2) peaks near the edge of the sphere (near xL2/Ma = ±1.0 and
yL2/Ma = 0) for all three polarizations (z- or radial in top row, x- in middle
row, y- in bottom row). The peak of the emission at resonant frequencies
(columns 3 and 4), as well as part of the frequency-integrated- (column
1) and nonresonant- (column 2) emission appears to originate outside the
sphere, near xL2/aM = ±1.3, yL2/aM = 0. The appearance of on-resonance
emission outside the sphere is consistent with the facts that (a) for MDRs
having Qs such as these (104 to 2 × 104), the most efficient way to excite
an MDR with a Gaussian beam is to focus the beam outside the sphere
(r/a ∼1.2 to 1.3) [30–33], and (b) the excitation and emission problems are
related by reciprocity [34,35]. It is also consistent with previous calculations
of glare spots in the on-resonance, 90◦ elastic scattering images of micro-
spheres [17], in which one of the glare spots peaks outside the sphere, near
r/a = 1.17. However, with a sphere on a surface [5], it is unlikely that this
type of peaking of the emission outside the sphere will be observed if the
mode volume overlaps appreciably with the planar surface, because the
surface disturbs the fields and spoils the resonance. For the sphere-on-a-
surface problem, MDRs whose near fields have less overlap with the sur-
face might be chosen by measuring images in different directions with re-
spect to the sphere/plane system.

This appearance of on-resonance emission outside the sphere does not re-
quire the molecule to be at the surface. When the emission frequencies are
at a sphere resonance and when the dipole at the surface is oriented in a
way that generates high-intensity spots in the image (e.g., row 2, column 3,
or row 3, column 4) then the dipole can be taken further inside the sphere,
to r/a as small as about 0.8, and the images appear almost identical (not
shown) to images of the sphere on the surface, except that the overall in-
tensity of the image depends on the dipole position (it scales as the squared
modulus of the appropriate radial function at the position of the dipole r′,
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Figure 2. Calculated images of dipole at r/a = 0.9999 in 5-µm-diameter sphere of refractive index 1.454. Image plane is
at origin of L2 coordinate system. Horizontal axis is yL2/aM , and vertical axis is xL2/aM . Dotted line in top row, third
column, shows where edge of sphere would be imaged in geometrical optics limit. Dipole is polarized in the z- (xL2 -), x-
(zL2 -), and y- (yL2 -) directions in top, middle, and bottom rows, respectively. In first column emission is integrated over
frequency from 16367 cm−1 to 16967 cm−1 (encompassing 5 MDRs). Molecule’s emission is centered at 16667 cm−1,
and it has Lorentzian linewidth (full width half maximum) of 100 cm−1. In second column single-frequency emission
is at 16666.7 cm−1, which is not on resonance. In third column emission is on TM 32,1 MDR (16559.7851 cm−1, with
Q = 104). In fourth column emission is on TE33,1 MDR (16742.035 cm−1 with Q = 2.2 × 104). Maximum values of color
scales have been adjusted to show main variations: with magnitude of dipole held constant, peak values are 2 in rows
1 and 2, 110 in row 3, and 600 in row 4 (except for top row of column 4, where it is only 10). Distance from center of
sphere to plane of lens is 1 mm, and from plane of lens to image is 40 mm.

as expected from eq (1)). That is, emission from a dipole at r/a = 0.8 can
appear to come from a dipole at r/a = ±1.3. As r/a decreases below about
0.8, the resonant contribution to the images decreases so that the nonreso-
nant emission becomes more prominent and, for r/a < 0.75, dominates the
image. For the TE33 MDR with the y-polarized dipole (row 3, column 4),
the maximum of the j33(mkr) occurs at r/a = 0.948 and the intensities in
the image are about 2.2 times those for the dipole at the surface.

In the images at resonant frequencies (columns 3 and 4) the intensity is
symmetrical about the planes defined by xL2 = 0, and yL2 = 0. In the non-

8



resonant images (column 2) the emission is asymmetrical about xL2 = 0,
and for y-polarization the emission is brighter on the side opposite where
the dipole would be imaged if the sphere were not there. In column 1 (inte-
grated over emission frequency) the images appear to be weighted super-
positions of columns 2, 3, and 4 (the nonresonant and resonant emission).
The weights are such that all three components (nonresonant, TE MDR,
TM MDR) appear in different images. For the y-directed dipole (column 1)
there are two intensity peaks on each side of the image, one near the
sphere’s surface and one outside it, and so it appears that the nonresonant
and TE MDR contributions to the images are comparable. For the other
dipole orientations the resonant modes contribute less than the nonreso-
nant frequencies.

Figure 3 illustrates calculated images of a y-oriented dipole similar to those
in the bottom row in figure 2, but with the lens at 165◦ from the z-axis. In
the upper row the focus position is the same as that for figure 2 (it is set
to image origin 1 to origin 2 when the sphere is not there). There are no
sharply defined bright points. In the lower row the detector plane has been
brought 10 mm closer to the lens, to decrease the spot size. This means that
the detector plane is 6.5 mm closer to the lens than would be required for
the dipole to be imaged to a small spot if the sphere were not there.∗ These
calculations show that with the NA as large as 0.5, two dipoles in a 5-µm-
diameter sphere may not be observed as two dipoles because one may be
so out of focus that it appears only as diffuse light.

The images in figures 2 and 3 have at least one plane of symmetry (yL2

= 0) because the dipole orientations are symmetric about the y = 0 plane.
Figure 4 illustrates the type of nonsymmetric images that occur for dipoles
not symmetric about y = 0. In each image the dipole’s orientation is ix + iy
+ iz (with the same total magnitude as in fig. 2 and 3). The dipole is at 135◦

from the lens center (left image) and 165◦ from the lens center (right image).
The images are not symmetric. The image of the dipole at Θ = 135◦ appears
to be only a perturbation from a symmetric case. However, the image of the
dipole at Θ = 165◦ is highly asymmetric.

If the fluorescing molecules photobleach slowly, so that there is time to
focus first on one molecule and then on another, then it should be possi-
ble to (a) experimentally distinguish the single- and multiple-dipole cases
and (b) estimate from the focus positions where the molecules are. If the
sphere can also be imaged from different directions, it may also be possible
to use these results to determine the orientations of the dipoles.

∗If m = 1 and Θ = 165◦, then with the lens law the image plane should be at zL2

= 3.52 mm. The calculated images have spot sizes that do not vary markedly between zL2

= 2.5 and 4.5 mm.
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Figure 3. Calculated images of dipole in sphere as in figure 2, but with lens at Θ = 165◦ from z-axis. In upper row image
plane is at origin of L2 coordinate system. In lower row image plane is at zL2 = 10 mm (i.e., 10 mm closer to lens than
in fig. 2), so that the spot size is smaller.

Figure 4. Calculated
images of dipole in sphere
as in figure 2, except that
dipole’s polarization is
p(r′) = (ix + iy + iz)/

√
3,

and lens is at Θ = 135◦ (left
image) and Θ = 165◦ (right
image). Images are
integrated over emission
frequency with same
parameters as in figure 2.
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4. Conclusions

We modeled fluorescence images of single molecules in microspheres, and
demonstrated how the images depend on the position, orientation, and
emission frequencies of the molecule. One result is surprising, at least at
first glance: when the dipole’s emission frequency coincides with a reso-
nance frequency of the microsphere, the brightest regions in the images
occur outside the boundary of the sphere, at r/a in the range of 1.2 to 1.3,
for some dipole positions. This observation is similar to calculations and
measurements of the excitation of sphere resonances with Gaussian beams
focused outside of a sphere. However, the two cases are different in that
the emission from the dipole is more symmetrical and lacks the focus of the
Gaussian beam. As far as we know, experimental images with the emission
appearing to peak outside the sphere when the sphere is in focus have not
been reported.

Calculations of the type presented here may help in interpreting images of
molecules in microspheres and in suggesting useful experimental arrange-
ments for determining the positions and orientations of single molecules in
microspheres.

This work was sponsored in part by the U.S. Department of Energy, Office
of Basic Energy Sciences, Oak Ridge National Laboratory, including con-
tract DE-AC05-96OR22464 to the U.S. Army Research Laboratory.
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